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1. INTRODUCTION

The study of low pressure flames has significance to the Army because these flames may provide

information regarding the initial decomposition mechanisms of nitramine-based propellants (Scoeder

1980). In general, the flames under study are mixtures of a nitrogen-containing oxidizer and a

conventional fuel. In the work reported here, a stoichiometric methane/nitrous oxide gas mixture is used

because of the ease of working with this flame.

In a low pressure environment, the structure of a flame is expanded. Flame regions which hold the

most interest for chemists and physicists are those in which chemical bonds are being broken and formed.

These regions are called "reaction zones." At normal (atmospheric) pressures these reaction zones (i.e.,

preheat, primary, and secondary) are small compared to the overall flame dimensions (Fifer 1984). A low

pressure environment causes the entire flame to become more diffuse, expanding the reaction zones and

providing a larger region for study.

Although flames have been studied extensively since the middle of the 19th century (Gaydon 1974),

there are experimental difficulties which have yet to be entirely overcome. Chief among these are the

determination of temperature and the quantification of species within the flame. Ideally, any method of

probing a flame should be quantitative and nonintrusive. Infrared spectroscopy is an excellent tool for

such studies, but has the disadvantage that it is a line-of-sight technique, and therefore its value as a

diagnostic tool is degraded when the beam must traverse a nonhomogeneous medium.

In this study, we report results from an analysis of a low pressure stoichiometric methane/nitrous oxide

flowing mixture prior to and during combustion using Fourier transform infrared (FT-IR) spectroscopy.

As mentioned above, the main disadvantage to using line-of-sight absorption techniques is that the signal

at the detector is determined by species along the entire beam path. In low pressure flame work, large

temperature and density gradients along the beam path make it difficult to determine which features in the

spectrum are from species within the flame zone, and which are due to exhaust gases, or to species within

interfacial regions, or species in the beam path outside of the low pressure chamber.

Several methods have been employed to discriminate against cold gas absorptions in line-of-sight

spectra of burner flames. A shroud gas is often used to provide an entertainment of combustion species

within the cylinder defined by the burner frit circumference. However, the probe beam still must traverse
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regions of greatly varying density and temperature. Sapphire tipped "eyeballs" may be inserted into the

chamber near the flame and used to physically exclude the beam from passing through the cold gas region,

but this technique has the potential to perturb the flame. Another method of cold gas discrimination is

to observe transitions from states which are only populated at elevated temperatures (Ouyang and Varghese

1991). This method still is limited by the fact that the technique is a line-of-sight method, and that the

observed absorbance is still integrated along a path through all temperature and density gradients.

Recently, Best et al. (1991) have published a paper describing the history and use of tomography to

determine species concentrations and temperatures within an atmospheric pressure diffusion flame, and

to report the first use of tomography to analyze infrared spectra. We have applied a similar technique to

the analysis of line of sight spectra of subatmospheric pressure flow mixtures prior to and during

combustion. We have also used the technique to reconstruct full local spectra within the cylinder defined

by our burner frit circumference.

2. BACKGROUND

Classical tomography assumes any object to be composed of a series of slices that have been stacked

upon each other to form the object. The objective of classical tomography is to be able to look inside an

object and see any one of those slices, with the view being unobscured by the slices in front of or behind

the slice of interest. Typically, in classical tomography, only the layer of interest is in focus, while other

layers are blurred or do not appear at all. As employed in radiology, classical tomography moves the

source (usually emitting x-rays) and the detector in such a way that only a point in the plane of interest

is in focus. This is usually accomplished by making the point of interest in the plane of interest the

fulcrum about which the source-detector pair is moved. A reconstruction of the slice or plane is

accomplished by taking a series of projections through different points in the plane of interest (Barrett and

Swindell 1981). Computed tomography differs from classical tomography in that all projections in

computed tomography are taken through the plane of interest, with the projections restricted to lie in that

plane. The picture of the plane of interest is then reconstructed using computer techniques.

3. EXPERIMENTAL

The low pressure burner apparatus is shown in Figure 1. The flame is supported on a water-cooled,

stainless steel fritted burner (McKenna Industries, Inc). The premixed fuel/oxidizer mixture is regulated

2



by an MKS Instnments Model No. 147 flow controller and flows into the bottom of the burner into a

small volume directly below the porous flit. The stainless steel burner frit (6-cm diameter) is surrounded

by a porous bronze annulus, through which a shroud gas may be flowed. The burner is mounted on a

motorized stage, which provides horizontal translation. This stage is, in turn, mounted on a rotatable

vertical positioning device, thus providing the capability of positioning the burner at any point within a

Cartesian coordinate system defined by the ranges of the positioning devices. This whole assembly sits

inside an evacuable chamber which has been equipped with LiF windows. A combined fuel/oxidizer flow

rate of 2 L/min is typical to support a 30-torr flame.

Figure 2 shows the experimental apparatus used to probe the flame. The output beam from a Mattson

Instruments Galaxy Series FT-IR spectrometer is passed through the center of the low pressure chamber.

The output beam of the FT-IR spectrometer is brought to a focus at the center of the burner chamber

(unapertured beam waist of -1 cm). Detection of the interferogram output of the FT-IR spectrometer is

by a liquid nitrogen-cooled HgCdTE detector. All spectra are obtained using 200 scans at 4-cm'

resolution. Maximum apertured probe beam diameter is 4.7 mm. The output of the HgCdTe detector is

transformed using triangular apodization. No zero filling is employed prior to the transformation of the

interferogram. Also, no adjustment was made to account for any nonlinearity of the detector when

exposed to the high thermal signal from the burner flame, since the thermal emission of the flame differs

as different vertical positions in the flame are imaged. Normally, this introduces a DC offset to the signal

reported by the detector. However, since only the probe beam is modulated, signal detection is not

noticeably affected.

Figure 3 shows an example of the probe beam path for the experiments reported here. Assuming that

the beam passes through a nonabsorbing medium outside of the burner chamber, there are three distinct

regions of temperature and density within the burner chamber (exhaust, shroud, burner). Proceeding from

the edge of the chamber to the burner center, the gas temperature increases and the gas density decreases.

This means that a volume of exhaust gas outside the burner region (lower temperature, higher density) will

absorb more strongly than the same volume of exhaust gas in the burner region (higher temperature, lower

density). We believe the presence of exhaust gases accounts for the lower than expected temperatures

often calculated from line-of-sight spectra (McNesby and Fifer 1991).
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4. METHOD OF DATA REDUCTION

In the tomographic analysis employed here, the column of premixed gas and flame (if present) above

the burner frit is assumed to have axial symmetry. Referring to Figure 4, let f(p) be the line-of-sight

absorbance along a path normal to a radius vector r, where p is the distance of the normal to the path to

the burner axis. The line-of-sight absorbance f(p) at a particular frequency is given by

f(p) 2f g(r)rdr/(r 2 - p 2), (I)

where g(r) is the radial dependance of the absorbance at a particular frequency. Figure 5 shows f(p) as

a function of p for a constant g(r) and for a triangular g(r). Equation 1 is one half of an Abel inversion

pair (Cormack 1963), the other equation being

g(r) = -d/dr {1Wr fr f(p)dp/[p(p 2 _ r 2)} . (2)

Figure 6 shows the result of inverting the synthetic data for the constant g(r) shown in Figure 5, with and

without line-of-sight data through regions where the absorbance is zero, for 23 and 20 evenly spaced data

points, respectively. The g(r) retrieved by the inversion agrees well with that input into the original

calculation. The "ringing" observed in the region of transition between constant and zero absorbance

decreases as the number of evenly spaced data points increases. The inversion program was kindly

provided by Prof. Philip Varghese of the University of Texas (Deutsch and Beniaminy 1983).

5. RESULTS AND DISCUSSION FROM TOMOGRAPHIC ANALYSIS OF
EXPERIMENTAL DATA

The tomographic technique just described is first applied here to a noncombusting stoichiometric

CHdN20 mixture, with an Argon shroud, flowing at 4.6 torr. Flow rates for the methane-nitrous oxide

mixture were 0.35 and 1.3 L/min, respectively. Ar flow was 5.0 L/rin. Because the technique should

discriminate against all absorbances except those which change as beam position through the burner
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changes, single-beam spectra are used in the analysis. Figure 7 shows a three-dimensional representation

of line-of-sight single-beam spectra through the flowing Ar/CH4/N 20 mixture. These spectra represent the

convolution of the source output and the detector response curves superimposed upon the absorptions due

to gases in the beam path. The probe beam is centered at the lowest unobscured position relative to the

burner surface (beam center 2.3 mm above burner surface). The absorption caused by the asymmetric

stretch of CO2 (in the beam path outside of the chamber) dominates the spectrum. Features due to the

C-H stretch in methane (3,020 cm-) and the asymmetric stretch in N20 (2,223 cm-') are much less

discernable. In addition, there is no appreciable diminishment in absorption due to CI 4 or N20 for line-

of-sight spectra as the edge of the burner frit (at 30 mm off-axis distance) is approached by the probe

beam. Figure 8 shows the spectrum for r = 0 (i.e., at the burner center) reconstructed using Abel inversion

from the data L, Figure 7. For this reconstruction, the absorbance due to the asymmetric stretch of CO2

has been almost completely removed. An absorption is shown as a negative deviation since gases present

in the beam path remove intensity from the beam. The increase in noise relative to the original spectra

is caused by the inversion process. Usually, some form of data smoothing (Best et al. 1991) (and

accompanied decrease in spectral resolution) is performed prior to inversion of the data to minimize the

noise in the transformed spectra. No smoothing of the data was performed for the spectra reported here.

Figure 9 shows a three-dimensional reconstruction of the radial dependence of the infrared spectrum

of the flowing gas mixture obtained from the spectra presented in Figure 7. At the right (low frequency)

side of this figure the N20 absorption (at 2,223 cm") is seen to diminish (become less positive) as the

edge of the burner frit is approached. Similar behavior is seen at 3,020 cm -' for the C-H stretch of CHI4 .

The unusual behavior of the absorption due to the asymmetric stretch of CO2 is believed to be due to

atmospheric fluctuations in CO2 during the course of a given experiment, which is accentuated because

the beam travels approximately 1 meter through open air between the spectrometer and the low pressure

chamber. Figure 10 shows reconstructed spectra of the species present at the burner center as a function

of height above the burner surface. These spectra were reconstructed from the spectra shown in Figure 7.

Intensities have been normalized to 0 at 2,000 cm 1 to aid in comparing the spectra to each other. In

general, it appears that the concentrations of methane and nitrous oxide remain nearly constant at the

burner center up to 23 mm above the burner surface.

Figure 11 shows a three-dimensional representation of line-of-sight absorbance spectra taken through

a stoichiometric methane/nitrous oxide flame at 40-torr total pressure. No shroud gas is used. The

4.7-mm diameter probe beam is centered 6 mm above the burner surface. Spectra are collected at 4-cm'
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resolution. The spectral region shown is that corresponding to the asymmetric stretch region of CO2 and

N20. In this figure, the CO2 absorbance is seen to obliterate all other features. Figure 12 shows the data

from Figure II after inversion. The CO2 absorbance has now almost completely disappeared and, instead,

an absorbance due to N20 (2,223 cm-1) is the most prominent feature in the spectra. The broad profile

of the N20 absorption is believed to be caused by the temperature gradient which occurs along the

distance defined by the probe beam diameter (4.7 mm). This reconstruction indicates that the CO2

absorbance in Figure 11 is due to gas outside the cylindrical region proscribed by the burner frit

circumference. No absorbance due to CH-4 at 3,020 cm- was observed in either the raw or transformed

spectra. The gradual sloping of the absorbances as off-axis distance (p) increases in the inverted spectra

in Figure 12, may in part be caused by the limited number (8) of data points.

6. CONCLUSIONS

We believe that tomographic analysis of line-of-sight spectra through inhomogeneous media will

become a standard analytical technique. While many experimental and computational difficulties remain,

the degree of sophistication already employed in radiological imaging will undoubtedly accelerate

development of tomography as a spectroscopic technique. We are engaged in an ongoing research project

which is applying tomographic analysis to laser spectroscopy and Fourier transform spectroscopy with the

aim of being able to spatially quantify all infrared active species within the burner flame. At present, our

immediate goal is to increase the number of projections obtainable with the Fourier transform

spectrometer, since the quality of the reconstruction increases with the number of projections. We believe

this will become a valuable tool in combustion spectroscopy. We are also developing an application of

the technique to Fr-IR microscopy.
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